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Abstract 

This senior project demonstrates how inelastic behavior of a 

material affects the optimized-buckling-load shape of the 

column under volumetric constraint. Projected-gradient descent 

(PGD) and finite element method (FEM) is used to study the 

effect. The buckling load is calculated based on Euler-Bernoulli 

beam theory by finding the least eigenvalue from modified 

power method with Rayleigh quotient. For simplicity and due to 

the inelastic property of the material, bisection method is 

implemented for the iteration process to find the inelastic 

modulus corresponding to the critical buckling load of the 

column. The selected results show how inelastic modulus 

affects the shape and the optimized buckling load compare to 

linear elastic modulus case. 

Keywords: projected gradient descent methods, finite element 

method, inelastic buckling, shape optimization. 

1. Introduction 

Optimization is becoming the essence of how engineers 

design their structures. Due to the limited resources and 

required conditions of the problems, engineers must come up 

with the efficient design that meet both the project performance 

and budget. Computer programming plays the important role on 

optimization method as the problem gets too complicated for 

human. Combining the sophisticated mind of the engineer and 

the computation power of the computer that keeps improving 

through time, we will be able to solve more daunting tasks that 

was thought to be unsolvable in the past. 

Safety and cost have been the give and take the engineer 

must decide on the project. The safer of the structures, the 

higher of the price. There are many components and aspects  in 

the building projects to be considered (e.g., capacity, 

serviceability etc.) as one wants the best cost-efficient out of it. 

The inelastic buckling of a column is chosen to investigate on 

this paper, because it contains the fundamental ideas in the 

structural engineering and takes a step further on the studying 

of the inelastic behavior of the material which tends to play an 

important role on real-world problems.  

The problem of finding the strongest column was first solved 

mathematically by Keller [1] using the isoperimetric inequality. 

He found that the strongest column has an equilateral triangle 

as cross section, and it is tapered along its length, being thickest 

in the middle and thinnest at its ends with buckling load 61.2% 

larger than that of circular cylinder. For column with the same 

cross-section shape, the best tapering is found to increase the 

buckling load by one third over that of a uniform column. The 

work is further studied by Tadjbakhsh and Keller [2]. They used 

the isoperimetric inequality on the broader boundary conditions, 

i.e., clamped-clamped, clamped-pinned, pinned-pinned, and 

clamped-free boundary conditions. They found that the pinned-

pinned column is the strongest column among the other cases. 

Then Olhoff and Rasmussen [3] reconsider the problem in the 

clamped-clamped case. They pointed out the necessary to 

consider the possibility that the optimum fundamental buckling 

load is a double eigenvalue, therefore, the governing equation 

is bimodal which indicates that the previous work [2] is not 

optimum. They also found that the work did not include the 

cross-section area constrains which allows internal hinges inside 

the column.  

To resolve this issue, Wang, and Tada [4] made a 

reinvestigation on the prior research done by Tadjbakhsh and 
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Keller [2] and Olhoff and Rasmussen [3]. They concluded that 

problem of clamped-clamped column is indeed a double 

eigenvalue problem. Therefore, it is impossible to obtain the 

true optimum solution from single modal formulation that was 

previously assumed and done. They obtained two mutually 

symmetrical optimum eigenfunctions under numerical method 

which was incorrectly found to be asymmetry by Olhoff and 

Rasmussen [3]. Later, Hideyuki et al. [5] applied the Lagrange 

multiplier along with traction method, normally used in external 

work minimization problems, in dealing with the multimodal 

condition to find the optimum solution for critical buckling of a 

column-like and arch-like two-dimensional problems in a plane 

strain condition. Their result agrees with the work done by Tada 

and Wang [4]. Maalawi [6] focused on the practical fabrication 

aspect of the column due to the highly non-linear shape of the 

optimized column. The optimized shape also proven to be 

suboptimal due to the specific stiffness and mass distribution 

relation given into the column. To deal with the issue, Maalawi 

presented a practical discrete model, by considering a multi-

segment column along with cross-sectional area, radius of 

gyration and length of each segment as designing variables. The 

model yields exact global optimal solution of clamped-clamped 

column.  

Krishna, and Ram [7] studied on the discrete link-spring 

model of the column. They studied on regular cases where 

there are no internal vanishing cross-sectional areas in the 

column. Their work evaluates the strongest column for pinned-

pinned boundary conditions from considering clamped-free or 

pinned-free conditions. Then their optimal system is determined 

recursively by using a one parameter iterative loop. Their model 

can also verify the optimal buckling load done by Tadjbakhsh 

and Keller [2]. Wang et al [8], developed Hencky bar-chain 

model (HBM) for the simple way to determine the buckling and 

vibration solution of non-uniform beams resting on partial 

variable elastic foundation. The HBM allows the analyst to 

replace complicated differential equation with set of linear 

algebraic equations which can be readily solved. HBM also has 

advantage on having clear physical meaning at each joint which 

is not always true for finite difference method (FDM) that 

requires introducing fictitious nodes.  

Wang et al [9], detected a small error done by Krishna and 

Ram [7] on the assumption of using a small number of rotational 

springs to interpret the carrying column shape, which may 

produce an inaccurate higher buckling load of HBM than that of 

the continuum column because of the presence of rigid 

segments. Wang et al, also noted that the segmental number of 

HBM should be sufficiently large to capture the carrying shape 

of the continuum column. More importantly, the exact buckling 

solutions for the uniform HBM under axial load and self-weight 

as well as non-uniform HBM under axial load with specific class 

of spring stiffnesses are derived for the first time. Continuing their 

work, Wang et al. [10] proposed a simple but powerful method 

for optimization of inhomogeneous, elastically restrained 

columns against buckling subjected to both compressive 

concentrated and distributed axial loads that include self-

weight. The proposed method adopted the Hencky bar-chain 

model for discretization of Euler columns. The critical buckling 

loads are found by finding the lowest eigenvalue of the system 

algebraic equation. The proposed optimization scheme is based 

on a parallel genetic algorithm. Comparing their work to the 

previously done solution shows the fast convergence, high 

accuracy, and flexibility of the proposed method. 

The problem of finding the column shape for maximum 

elastic buckling capacity has been done by senior civil 

engineering student class of 2020. The use of gradient descent 

technique along with finite element method shows a very 

satisfying result due to its simplicity yet a powerful procedure 

for solving optimization problem dealing with critical buckling 

load of a column. However, in the real-world problems, 

materials often behave inelastically, thus using linear elastic 

material results in impractical solution. Introducing inelastic 

property of the material to the problem is expected to give the 

more realistic aspect to the problem and can be further adapted 

into more complex problems accounting inelastic behavior of 

the material.   

The objective of this research is to study the effect of 

inelastic behavior of material on the shape and critical buckling 

load of an optimized clamped-free column subjected to an 

axially concentrated force at its free end under volumetric 

constrain.  
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2. Problem formulation             

2.1 Formulation of the weak form 

Consider a straight clamped-free column model under Euler 

beam theory, made of inelastic material subjected to axial force 

P at its free end. The cross-section of the column is circular 

throughout with area ( )A A x= where x is a global coordinate 

starts from the base of the column as 0x = and x L= at the 

column’s free end. The column is subjected to the volumetric 

constraint  

0
0

( )
L

A x dx V=∫                             (1) 

Where 0V  is a specified volume of material. The relationship 

between the bending moment M, the shear force V, the 

curvature k, the rotation θ , and the deflection v at any point 

of the column are given by 

 
Figure 1 Model of cantilever column length L .                                       

cr
dM dvP V
dx dx

+ + =                      (2) 

κ= tM E I                              (3) 

0=
dV
dx

                                   (4) 

,θ
κ θ= =

d dv
dx dx

                             (5)                                                                                            

where Pcr denotes the critical flexural buckling load of the 

column and tE is the tangent modulus. The relationship 

between the moment of inertia I and cross-sectional area A , for 

the circular cross section, is defined as  
2

4
AI
π

=                                        (6) 

Substituting (3)-(6) into (2) leads to the equilibrium equation in 

terms of the deflection: 
22 2 2

2 2 2 0
4
t

cr
E Ad d v d vP

dx dx dxπ
 

+ = 
 

           (7) 

In addition, the following boundary conditions at 0x =  and 

x L=  must be satisfied: 

(0) 0, (0) 0, ( ) 0, ( ) 0v M L V Lθ= = = =      (8) 

Upon the normalizations, /x x L= , /v v L= , 0/A AL V= ,

0/t tE E E= and 4 2
0 04 /crP P L E Vπ= the governing equation 

(7) and the volumetric constraint (1) become 
2 2 2

2
2 2 2 0t

d d v d vE A P
dx dx dx

 
+ = 

 
                  (9) 

1

0

( ) 1A x dx =∫     (10) 

For any given profile of the normalized cross-section area  A , 

the weak-form statement of the boundary value problem is 

established via a standard weighted residual technique together 

with the integration by parts and the enforcement of the 

boundary conditions (8). The final formulation is to find the 

normalized buckling load P  such that there exists a nontrivial 

function 2
0v H∈  such that 

 
1 12 2

2
2 2

0 0

0t
d v d w dv dwA E dx P dx

dx dxdx dx
   − =     
∫ ∫ 2

0w H∈   (11) 

where
2
0 { : (0) 0 (0) 0H f f f f′ ′′= = ∧ = ∧  }is square integrable  

Finally, the statement of the corresponding optimization 

problem is to find the maximum buckling load of the column 

subjected to the volumetric constraint (10).                                     

2.2 Material model 

To take the material inelasticity into account, Ramberg-

Osgood model is adopted in the present study. In particular, the 

stress-strain relationship is given by 

        
01/

0 0

 
n

K
E E
σ σε

 
= +  

 
                        (12) 

whereε andσ denote the strain and stress, respectively; 0E  is 

the initial modulus; and K  and 0 1n ≤  are model parameters. 

Note that the material parameters can be obtained via the 

calibration with experimental data. The normalized tangent 

modulus tE  for this particular model is given by 

   

0

1
-1

0

0 0

1

1

t
t

n

E
E

E
K

n E

σ
= =

+
 
 
 

                       (13) 

2.3  Discretization 

Standard hermite shape, eN ,is used to approximate the trial 

and test function. 
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Where eh is length of the generic element eΩ .Now, the trial 

and test functions are approximated by 

( )e e e ev x N u=    (15) 

( )e e e ew x N w=    (16) 

where 1 1 2 2{ }e e e e e Tv vθ θ=u is a vector containing the 

normalized displacement ( 1 2,e ev v ) and rotation ( 1 2,e eθ θ ) at 

both ends of the element and ew  is an arbitrary vector. The 

normalized area profile A over the generic element eΩ  is 

approximated by a constant function and denoted by eA . A 

collection of normalized areas for all elements is denoted by a 

vector A . Upon the approximations (15)-(16) and discretization 

of the normalized area profile together with the standard 

assembly procedure, the discretized form of (11) is given by 

( ) 0K PM U− =         (17)  

Where 

      2

1

,      ( )
e

n
e e e e T e

t
e

K k k E A C C dxij
= Ω

= =∑ ∫     (18) 

     
1

,     ( )
e

n
e e e e T e

e

M m m B B dx
= Ω

= =∑ ∫         (19) 

With       

/e e eB dN dx= , /e e eC dB dx=       (19) 
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Upon the discretization of the normalized area profile via 

the piecewise constant function, the volumetric constraint (10) 

now becomes 

1=FA    (22) 

where [1 1 1]eh= F  

3. Solution scheme 

After obtaining the eigenvalue system (17), the normalized 

critical buckling load P can be found by modified power 

method. The corresponding normalized tangent modulus, tE , 

can be found by bisection method with bracket answer. 

After the normalized critical buckling load of the column for 

the given set of normalized cross-section area, A , is found, the 

maximized critical buckling load is determined through 

Projected-Gradient-descent procedure. The process takes the 

initial guess of set of normalized area, 0A and iterates until the 

convergence value is lower than the specified tolerance.  

4. Numerical result 

4.1 Verification process 

The normalized buckling load, P , with increasing number of 

elements from n = 2 to 128 for the selected value, 0 0.8n =

and 3
0/ 0.001L V = , is reported in Table 1 and Figure 2. The 

value of P starts to converge when number of elements go 

beyond 64 elements. Figure 3 shows the cross-section area of 

the optimized column for the selected value. The graph also 

shows convergence of the area as the number of elements 

increase which agree with the convergence of normalized 

buckling load in Figure 2, therefore, the convergence of the 

numerical solution is confirmed. 

The optimization procedure, projected gradient descent 

method, is verified using MATLABs built-in function, “fmincon”. 

The verifying result is reported in Table 2 for 0 0.8n = and
3

0/ 0.001L V = . Comparing the critical buckling load, P , obtain 

from each process shows smaller error between PDG and 

fmincon as the number of elements increase from 2 to 128 

element. which confirmed the validity of the PDG method 

implemented into MATLABs. 

Table 1 Comparing normalized Buckling ( P ) with varying number 

of elements (n) between PGD method and fmincon. 

n 

  

PGD Method 

  

fmincon 

  

Error(%) 

Compare with 

fmincon 

2 0.657734 0.657734 11.69465926 

4 0.705996 0.705996 5.215105474 

8 0.729378 0.729377 2.075920698 

16 0.739197 0.739189 0.75765376 

32 0.742995 0.742971 0.247716557 

64 0.744392 0.744391 0.060174453 

128 0.744889 0.74484 0.006556235 
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Figure 2 Normalized Buckling P versus the number of elements 

Figure 3: Normalized cross-section area A  along the column as 

number of elements increase from 2 to 128. 

4.2 Effect of inelasticity on normalized buckling load 

Figure 4, in case of short column, the normalized buckling 

load increases as n0 increases. The behavior starts to change as 

the column gets longer. For intermediate column, the 

relationship between normalized buckling load and n0 is 

inverted such that the increasing n0 no longer results in 

increasing buckling load but instead decreasing the nomalized 

buckling load. For very long column, n0 will have very little 

effect on the normalized buckling load and the normalized 

buckling load tends to approache the same value as n0 and L 
increase. This phenominon is directly related to the inelastic 

modulus model, Ramberg-Osgood’s model, equation (13), 

where tangent modulus, tE  increases as n0 increase when 

stress is high, as stress in short column, and decreases as n0 

increases when stress is low, as in long column. The value of 

tangent modulus also approach a single value as stress increases 

with variation of n0 which gives the converging trend in figure 4 

and figure 5. 

4.3 Effect of inelasticity property on normalized cross-section 

From figure 6 (a), short column, inelastic property of the 

material causes the area toward the base of the column to be 

smaller. The lower value of n0, the smaller the areas. Howerver, 

for area toward the free end, the lower value of n0 results in the 

bigger areas of the column. This gives the overall optimized 

column shape, for low value of n0 ,to approach uniform shape. 

The main reason is directly related to Ramberg-Osgood model. 

Under the model, in low stress region or region toward column’s 

base, lower value of n0 gives higher tangent modulus. But in high 

stress region, region toward the column’s free end, lower value 

of n0 gives lower tangent modulus. With higher tangent 

modulus, the cross-section area can be smaller to resist the 

applied load while lower tangent modulus requires bigger area 

which cause the overall more uniform column shape as seen in 

figure 6 (a). 

For longer length of column, the effect of n0 on the cross-

section area starts to diminish. Figure 6 (b-c) shows cross-section 

area for intermediate and long column. It can be clearly seen 

that the cross-section area of the column for converge to linear 

elastic case as column gets longer. Therefore, it can be 

concluded that as column gets longer, the inelastic property of 

the material has a little to none effect to both normalized 

critical buckling load and normalized cross-section area of the 

column.  
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Figure 4 Normalized buckling load, P vs 0n for different value of L  

 

Figure 5 Normalized buckling load, P vs L for different value of 0n  

5. Conclusion 

This paper studies on how inelastic property of material 

affects the optimized elastic buckling of column. Ramberg-

Osgood model is used as inelastic model for the column. 

Projected gradient descent method is used for optimization 

process along with power method and bisection method.  

The result indicates that inelastic property mainly affects 

short column for both shape and the critical buckling load. With 

more inelastically material, short column tends to decrease its 

base area and increase its free end area, this result in more 

uniform optimized column compared to optimized elastic 

column. The effect of inelastic property is lower as the length 

of the column is longer and column shape converge to linear 

elastic optimized shape regardless of inelastic property as the 

length increases. Additionally, the normalized buckling load of 

short column increases as the material behaves more 

inelastically. The trend is inversed as the column transfer from 

short to long column, results in the decreasing normalized 

buckling load as material behaves more inelastically. Finally, for

0n approaching 1.0 and longer column, the shape and 

normalized buckling load of the column approach a single value 

which is the linear elastic case. 

  
   (a) 

       
    (b) 

 
   (c) 

Figure 6 Normalized cross-section area, A  along the column 

for (a) short column, (b) intermediate column, and (c) long column 
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